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Abstract

This document presents a preliminary study on the suitability of a second-order reconstructed discontin-
uous Galerkin (rDG) method for RELAP-7 thermal-hydraulic modeling. The document begins with a
brief description of the governing equations for compressible, two-phase vapor and liquid flow, with a
presentation of the seven-equation formulation details. A comparative study between the second-order
rDG method and the RELAP-7’s finite element method (FEM) with a entropy viscosity method (EVM)
based numerical stabilization scheme (namely FEM-EVM) over a series of benchmark test problems
is demonstrated. The intent for this suite of test problems is to provide baseline comparison data that
demonstrate the performance of 1) the rDG solution and 2) the RELAP-7’s FEM-EVM solution (with
RELAP-7 code version dated August 15, 2017), on problems from single- to specific, limited two-phase
flows. For all the test problems in this document, the rDG solutions were obtained with a second-order,
two-step, explicit strong stability preserving Runge-Kutta time integration method. The computational
results clearly indicate that the performance of the rDG method is superior to that of the RELAP-7’s
FEM-EVM method in all the test problems presented. Therefore, as far as the test problems in this doc-
ument are considered, the second-order rDG method is recommended as an improved solution method
option for RELAP-7.
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1 Introduction

1.1 About RELAP-7

The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a next-generation nuclear reactor
system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on
a modern scientific software development framework MOOSE (Multi-Physics Object Oriented Simulation
Environment) [3, 4] being developed at INL. The overall design goal of RELAP-7 is to take advantage of
the previous thirty years of advancements in computer architecture, software design, numerical methods
and physical models. The end result is expected to be a reactor systems analysis capability that retains and
improves upon RELAP5’s [5] and TRACE’s [6] abilities and extends the analysis capability for all reactor
system simulation scenarios.

The RELAP-7 project, which was started from 2012, is expected to become the main reactor systems
simulation toolkit for the Light Water Reactor Sustainability (LWRS) program’s Risk Informed Safety Mar-
gin Characterization (RISMC) effort and the next-generation toolkit in the RELAP reactor safety/systems
analysis application series. The key to the success of RELAP-7 lies in the simultaneous advancement of
physical models, numerical methods, and software design, while maintaining a solid user perspective. Phys-
ical models include both partial differential equations (PDEs) and ordinary differential equations (ODEs)
and experiment-based closure models. RELAP-7 utilizes well-posed governing equations for two-phase
flow, which can be strictly verified in a modern verification and validation effort. RELAP-7 uses mod-
ern computational methods, which allow implicit time integration, second-order schemes in both time and
space, and strongly coupled multi-physics.

MOOSE is a development and runtime framework developed at INL for solving engineering problems
computationally in a well planned and coordinated way. By using the MOOSE framework, the RELAP-7
code is developed by following the same modern software design paradigms used in other MOOSE devel-
opment efforts. The code is easily coupled with other codes. MOOSE provides various options of numerical
integration methods and mesh management for parallel computing.

Because RELAP-7 is an ongoing development effort, its foundational theories and numerical solution
methods will evolve with periodic updates to keep it current with the state of development, implementation,
and model revisions. A complete description of the technical details of the RELAP-7 code can be found in
the RELAP-7 Theory Manual [2].

1.2 Objective of this Work

The well-posed, hyperbolic, two-phase flow equation system of RELAP-7 is adopted from Ref. [1] wherein
the discrete equation method (DEM) was utilized with a finite volume method to prove the model’s solution
feasibility. Over the past six years of the RELAP-7 code development, however, the continuous Galerkin
finite element method (commonly denoted as “FEM”) has been employed as the numerical solution method
for solving these governing equations. FEM has been a straightforward solution method option for thermal-
hydraulic modeling in RELAP-7, largely because of the finite element modeling framework of MOOSE
upon which the RELAP-7 code has been built. The FEM approach has advantages when multi-physics
coupling is considered in a unified code development infrastructure. For example, the multi-physics and
multi-dimensional analysis capabilities, such as radiation transport and fuel performance, are conveniently
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obtained by coupling the current RELAP-7 code and other MOOSE-based applications (through MOOSE).

Despite the advantages of FEM in multi-physics coupling, however, the achievement of a viable, ac-
curate and ultimately robust numerical stabilization scheme for FEM has been a challenge. The recent
development of a novel numerical stabilization scheme for FEM — the entropy viscosity method (EVM) for
the non-equilibrium, seven-equation, two-phase compressible flow model in RELAP-7 [7–11], has signifi-
cantly advanced the state of the art for stabilized FEM methods, but has not achieved the desired robustness.
An outstanding issue associated to the EVM method for RELAP-7 thermal-hydraulic modeling is that the
performance of the EVM method depends critically on the tuning of its parameters. Thus the EVM method
in RELAP-7 works well given parameters empirically tuned for certain benchmark problems, e.g. the wa-
ter faucet and phase separation problems [11]. However, RELAP-7’s FEM with the EVM stabilization has
struggled for some problems that involve more complex physical phenomena of practical interest in nuclear
engineering. Therefore, with its current robustness limitations, it is unclear whether the EVM method should
be the final choice of stabilization method for RELAP-7.

Meanwhile, a second-order finite volume (FV) method variant from the class of reconstructed discon-
tinuous Galerkin (rDG) methods [12–14], namely rDG(P0P1) [15], has been recently considered as an alter-
native solution method option for RELAP-7 thermal-hydraulic modeling. The FV method [16] is one of the
most robust solution methods in the field of computational fluid dynamics (CFD), having been successfully
employed in a wide range of research and industry CFD codes. As far as the class of seven-equation, two-
phase compressible flow models are concerned, the FV method has been the most used solution method in an
abundance of relevant literature, e.g. Refs. [17–25]. The FV method (and thus the rDG(P0P1) method) was
not an option for RELAP-7 at its beginning, because of the missing FV option in the underlying MOOSE
framework. Because of the recent MOOSE capability extension effort, the rDG(P0P1) method is now possi-
ble in MOOSE, e.g. see the example of rDG(P0P1)-based, multi-dimensional, compressible flow simulation
code developed based on MOOSE [26]. In the rDG(P0P1) method, P0 indicates that a piecewise constant
monomial is used to represent a DG solution, and P1 represents a reconstructed linear polynomial solution
that is used to compute the fluxes across the cell boundaries.

The objective of this effort is to present a preliminary study of the suitability of the rDG(P0P1) method
for RELAP-7 stabilized thermal-hydraulic modeling. For quick proof of concept, a stand-alone rDG code
has been developed in this work. The rest of the document is organized as follows. First, the governing
equations for the compressible two-phase vapor and liquid flow, with a presentation of the seven-equation
formulation details are briefly presented in Section 2. Next, the rDG(P0P1) method is briefly described
in Section 3. A comparative study between the rDG(P0P1) method and RELAP-7’s FEM-EVM method
over a series of benchmark test problems is demonstrated in Section 4. The intent for this suite of test
problems is to provide baseline comparison data that demonstrate the performance of 1) the rDG(P0P1)
solution and 2) RELAP-7’s FEM-EVM solution (with the RELAP-7 code version dated August 15, 2017),
on problems from single- to specific, limited two-phase flows. For all the test problems in this document,
the rDG(P0P1) solutions were obtained with a second-order, two-step, explicit strong stability preserving
Runge-Kutta (SSP-RK) time integration method [27], while a first-order, one-step, backward Euler implicit
time integration method was used in the RELAP-7’s FEM-EVM solution. Finally, conclusions are given in
Section 5.
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2 Seven-Equation Two-Phase Model

2.1 Governing Equations

The one-dimensional, seven-equation two-phase flow model with variable cross-section flow area employed
in the RELAP-7 program [1, 2] can be described by the equations for the conservation of mass, momentum
and total energy for each phase (vapor and liquid), respectively, plus a volume fraction evolution equation
for the vapor phase. If we assume an unsteady, fully non-equilibrium state between the two phases, and
ignore the friction, boiling, and convective heat transfer originated of the wall as well as the inter-phase
friction, the governing equations can then be expressed with the following seven equations:

∂αgA
∂t

+uintA
∂αg

∂x
= Aµ(pg− pl)+

Γint,gAintA
ρint

(1)

∂(αρ)gA
∂t

+
∂(αρu)gA

∂x
= Γint,gAintA (2)

∂(αρu)gA
∂t

+
∂αg(ρu2 + p)gA

∂x
= pintA

∂αg

∂x
+ pgαg

∂A
∂x

+Aλ(ul−ug)+Γint,gAintuintA (3)

+αgρgA−→g ·−→n
∂(αρE)gA

∂t
+

∂αg(ρE + p)gugA
∂x

= pintuintA
∂αg

∂x
− p̄intAµ(pg− pl)+ ūintAλ(ul−ug) (4)

−Γint,gAint(
pint

ρint
−Hg,int)A+Ainthconv,g(Tint −Tg)A

+αgρgugA−→g ·−→n
∂(αρ)lA

∂t
+

∂(αρu)lA
∂x

= −Γint,gAintA (5)

∂(αρu)lA
∂t

+
∂αl(ρu2 + p)lA

∂x
= pintA

∂αl

∂x
+ plαl

∂A
∂x

+Aλ(ug−ul)−Γint,gAintuintA (6)

+αlρlA−→g ·−→n
∂(αρE)lA

∂t
+

∂αl(ρE + p)lulA
∂x

= pintuintA
∂αl

∂x
− p̄intAµ(pl− pg)+ ūintAλ(ug−ul) (7)

+Γint,gAint(
pint

ρint
−Hl,int)A+Ainthconv,l(Tint −Tl)A

+αlρlulA−→g ·−→n

where the subscripts g and l denote the physical quantities of the gaseous and liquid phase, respectively. The
“gaseous state” is generic, thus the two-phase model discussed in this document can be applied to both the
two-phase air-water and vapor-water scenarios. The solution state vector is[

αgA, (αρ)gA, (αρu)gA, (αρE)gA, (αρ)lA, (αρu)lA, (αρE)lA
]T

,

where αk, ρk, uk, and Ek (k = g or l) are the phasic volume fraction, density, velocity, and specific total
energy, respectively, with the relation αl = 1−αg. A = A(x) is the variational cross-section area function.
The rest of the physical variables in Eqs. (1) – (7) will be given next.
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2.2 Velocity and Pressure Relaxation Terms

The interfacial pressure pint is given as

pint = p̄int − sgn(
∂αg

∂x
)

ZlZg

Zl +Zg
(ul−ug) (8)

where the mixture interfacial pressure p̄int is given as

p̄int =
Zl pg +Zg pl

Zl +Zg
. (9)

where Zg = ρgcg and Zl = ρlcl , with cg and cl the speed of sound in the gaseous and liquid phase, respec-
tively.

The interfacial velocity uint is given as

uint = ūint − sgn(
∂αg

∂x
)

pl− pg

Zl +Zg
(10)

where the mixture interfacial velocity ūint is given as

ūint =
Zlul +Zgug

Zl +Zg
. (11)

The velocity relaxation coefficient λ is given as

λ =
1
2

µZlZg (12)

where µ is the pressure relaxation coefficient and given as

µ =
Aint

Zl +Zg
(13)

For simplicity, the interfacial area Aint can be defined as a polynomial function of αg, e.g.

Aint = Aint,max[6.75α
2
g(1−αg)] (14)

as used in [1], where Aint,max is a user-input coefficient. RELAP-7 also allows another simple polynomial
function [2]

Aint = aα
2
l +bαl + c (15)

where a = 4(Aint,min−Aint,max), b =−a, and c = Aint,min, and Aint,min and Aint,max are user-input coefficients.
A common choice for Aint,min in RELAP-7 is Amin

int = 0, with which Eq. (15) can then be rearranged as

Aint = Aint,max[4αg(1−αg)] (16)

where Aint,max = 1700 is a common choice.
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2.3 Inter-phase Mass and Energy Transfer Terms

The inter-phase mass transfer is given by

Γint,g =
hconv,l(Tl−Tint)+hconv,g(Tg−Tint)

hg,int −hl,int

=
hconv,l(Tl−Tint)+hconv,g(Tg−Tint)

Lv(Tint)

(17)

where the inter-phase temperature Tint = Tsat(p̄int) is the saturation temperature for a given pressure p̄int ,
and the inter-phase enthalpy for the gaseous and liquid phase hg,int = hg,sat(Tint) and hl,int = hl,sat(Tint),
respectively. Instead of using closure models, hconv,g and hconv,l are treated as user-input coefficients in this
work, with default choices to be hconv,g = 5,000 and hconv,l = 50,000, respectively.

To calculate Tint , the procedure in Refs. [1, 28] is adopted, as is the stiffened gas equation of state
(SGEOS) used in the present work. This procedure can be very accurate provided the two reference states are
picked sufficiently close to represent the experimental saturation curves as locally quasi-linear. Restrictions
can occur near the critical point. But away from this point, wide ranges of temperatures and pressures can
be considered [28]. For the SGEOS, the Gibbs free enthalpy of the gaseous and liquid phase is

g(p̄g,Tint) = (γgcv,g−q′g)Tint − cv,gTint ln
(Tg)

γg

(pg + p∞,g)γg−1 +qg

g(p̄l,Tint) = (γlcv,l−q′l)Tint − cv,lTint ln
(Tl)

γl

(pl + p∞,l)γl−1 +ql

(18)

respectively. At thermodynamic equilibrium at the interface, the two phasic Gibbs free enthalpies are equal,
i.e. g(p̄g,Tint) = g(p̄l,Tint). This implies:

ln(p̄int + p∞,g) = a+
b

Tint
+ c ln(Tint)+d ln(p̄int + p∞,l) (19)

where

a =
cp,l− cp,g +q′g−q′l

cp,g− cv,g
, b =

ql−qg

cp,g− cv,g
, c =

cp,g− cp,l

cp,g− cv,g
, d =

cp,l− cv,l

cp,g− cv,g
(20)

Eq. (19) is nonlinear, but can be used to compute the theoretical curve Tsat(p). using simple Newton iterative
numerical procedure. With the Tsat(p) determined, the heat of vaporization is calculated as

Lv(Tsat) = hg,int −hl,int (21)

where hg,int = hg,sat(Tint) and hl,int = hl,sat(Tint) can be calculated through SGEOS, respectively. The toal
enthalpy for the gaseous and liquid phase is

Hg,int = hg,int +
1
2

u2
int and Hl,int = hl,int +

1
2

u2
int (22)

respectively. The interfacial density
ρint = ρl,sat(p̄int) (23)

is also calculated through SGEOS.

14



3 A Second-Order Reconstructed Discontinous Galerkin Method

3.1 Overview

The class of reconstructed discontinuous Galerkin (rDG) methods, termed as PnPm schemes, were originally
introduced by Dumbser et al. [29–31], where Pn indicates that a piecewise polynomial of degree of n is used
to represent a discontinuous Galerkin (DG) solution, and Pm represents a reconstructed polynomial solution
of degree of m (m ≥ n) that is used to compute the fluxes. The PnPm schemes are designed to enhance
the accuracy of the DG method by increasing the order of the underlying polynomial solution. The beauty
of the PnPm schemes is that they provide a unified formulation for both the finite volume (FV) and DG
methods, and contain both the classical cell-centered FV and standard DG methods as two special cases of
PnPm schemes. When n = 0, i.e., a piecewise constant polynomial is used to represent a numerical solution,
P0Pm is nothing but the classical high-order FV schemes, where a polynomial solution of degree m (m≥ 1)
is reconstructed from a piecewise constant solution. When m = n, the reconstruction reduces to the identity
operator, and the PnPn scheme yields a standard DG method. Many variants of the original rDG methods
have been developed in recent years, for example, the hybrid HWENO+DG schemes by Balsara et al. [32],
the least-squares reconstruction-based DG schemes by Luo et al. [12, 13, 33], and the class of Green-Gauss
reconstruction-based hybrid DG/FV schemes by Zhang et al. [34, 35]. All of these schemes are able to
improve the spatial accuracy of the underlying DG methods without significant extra cost in storage and
computing time.

This work considers a second-order FV method variant from the PnPn schemes, namely rDG(P0P1) [15],
as an alternative solution method for RELAP-7 thermal-hydraulic modeling. In this method, P0 indicates
that a piecewise constant monomial is used to represent a DG solution, and P1 represents a reconstructed
linear polynomial solution that is used to compute the fluxes across the cell boundaries. As it was mentioned
in Section 1, the FV method (and thus rDG(P0P1)) was not an option for RELAP-7 at its beginning, because
of the missing capability in the underlying MOOSE framework. Because of recent MOOSE capability ex-
tensions, a generalized design of the rDG(P0P1) method has been implemented in MOOSE. Based on the
rDG(P0P1) implementation in MOOSE, an rDG(P0P1)-based, multi-dimensional (1D, 2D and 3D), com-
pressible flow simulation code, BIGHORN, has been developed [26]. The similar design can be applied to
RELAP-7. The rest of this section will briefly describe the rDG(P0P1) method for single-phase compress-
ible flows in the 1D domain with variable cross-section area. Extension of this method to coupled two-phase
gaseous and liquid flows based on the seven-equation model will be discussed in the future work.

3.2 Discretization in Space

By neglecting the velocity and pressure relaxation, inter-phase mass and energy transfer, and external force
terms in the seven-equation system of Eqs. (1) – (7), the gaseous and liquid phases become decoupled, and
consequently the system can be reduced to a system of Euler-like equations for each individual phase [36]:

∂U
∂t

+
∂F
∂x
−S = 0, (24)

where the volume fraction evolution equation for the gaseous phase as well as the subscripts for denoting
the phases is dropped. In Eq. (24), the conserved state vector U and flux vector F become [ρA,ρuA,ρEA]T

and
[
ρuA,ρu2A,(ρE + p)uA

]T , respectively. The remaining source term S is equal to [0, p(∂A/∂x),0]T .
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The rDG(P0P1) method is used to discretize Eq. (24) in space. In 1D, the computational domain Ω is
divided by a set of non-overlapping line segment cells Ωi. In each cell, the integral form of the governing
equations is required to be satisfied,∫

Ωi

∂U
∂t

dV +
∫

Ωi

∇ ·F dV −
∫

Ωi

S dV = 0. (25)

The conserved variable vector Ui are taken to be the unknowns and defined as cell-average solution variables
by Ui(t) = 1

Vi

∫
Ωi

U(x, t) dV , where Vi is the length of cell Ωi. The following equations can then be derived
using the divergence theorem,

Vi
dUi

dt
+ ∑

j∈Ni

∫
Γi j

Fi j ·ni j dΓ+ ∑
Γib∈∂Ω

∫
Γib

Fib ·nib dΓ−ViSi = 0, (26)

where Γi j = ∂Ωi∩∂Ω j denotes an interior common face between cell Ωi and Ω j, Γib = ∂Ωi∩∂Ω denotes a
face on the boundary of Ω; and ni j and nib are the unit vectors normal to face Γi j and Γib, respectively. For
each cell Ωi, Ni represents a set of neighboring cells, Ω j, sharing a common face, Γi j. In the 1D domain,
j = i− 1 or i+ 1. Because the numerical solution is discontinuous across the cell interfaces, the interface
fluxes are not uniquely defined. The flux function Fi j ·ni j that appears in the second term of Eq. (26) can be
replaced by a numerical flux function H (Ui j,U ji,ni j), where Ui j and U ji are the conserved state vector at the
left and right side of the cell interface (i < j). In the case of P0 solution, the solution in each cell is assumed
to be constant in space. On any interior face, Γi j, the two states are simply Ui j =Ui and U ji =U j. In order to
guarantee consistency and conservation, H (Ui j,U ji,ni j) is required to satisfy H (Ui j,U ji,ni j) = Fi ·ni j, and
H (Ui j,U ji,ni j) =−H (U ji,Ui j,ni j). Similarly, the flux function on the domain boundary Fib ·nib should be
determined by H (Uib,Ub,nib) with the use of appropriate boundary conditions satisfying the characteristic
theory [37, 38].

Finally, the boundary integration in Eq. (26) is approximated using the one-point quadrature rule at the
midpoint of the face, and the semi-discrete form of the equations is written as

Vi
dUi

dt
+ ∑

j∈Ni

H (Ui j,U ji,ni j)+ ∑
Γib∈∂Ω

Hb(Uib,Ub,nib)−ViSi = 0, (27)

where the flux function is approximated using Batten’s HLLC (Harten-Lax-van Leer-Contact) approximate
Riemann solver [39] in this work. This HLLC scheme has the following properties: 1) exact preservation of
isolated contact and shear waves, 2) positivity-preserving of scalar quantity, and 3) enforcement of entropy
condition.

By assembling contributions from all the cells and moving all the non-time derivative terms of Eq. (27)
to the right-hand side, a set of ordinary differential equations (ODEs) governing the evolution of the discrete
solution in time can be written as

MMM
dU
dt

=−R(U), (28)

where MMM is the mass matrix, U is the global vector of the degrees of freedom, and R is the residual vector.
MMM has a block diagonal structure that couples the degrees of freedom of the unknown vector associated to Ui

only within Ωi. Consequently, the inverse of MMM can be computed considering one cell at a time and stored in
advance. A multi-stage (up to three stages), explicit strong stability preserving Runge-Kutta time integration
method [27] can be used to advance the solution of Eq. (28) in time.
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3.3 Piecewise Linear Reconstruction

To achieve spatial accuracy higher than the first order, the solution in each cell needs to be reconstructed. The
simplest approach is piecewise linear reconstruction, which can be performed on the conserved variables,
primitive variables such as Q = [ρ,u, p]T , or characteristic variables. Though the conserved variables satisfy
the conservation of the reconstructed solution, they are not as robust as the primitive variables for ensuring
the positivity of density. The characteristic variables lead to more accurate schemes, but at a higher compu-
tational cost. This work adopts the primitive variables in the solution reconstruction process. From now we
denote Q̄i as the underlying P0 primitive variables in each cell, and Qi the P1 linear polynomial primitive
variables to be reconstructed. Following a reconstruction process, the two reconstructed states Qi j and Q ji

at the common cell face Γi j can be obtained to compute the inviscid fluxes H (Qi j,Q ji,ni j). By assuming
the gradient of Qi at the center of cell Ωi, the reconstructed solution in Ωi is Q(x) = Q̄i+(x−xi) ·∇Qi. The
two states can be obtained at the face Γi j (i.e., x = xi j):

Qi j = Q̄i +(xi j− xi) ·∇Qi and Q ji = Q̄ j +(xi j− x j) ·∇Q j,

where xi j = xi+1/2 when j = i+ 1. In order to ensure monotone solutions, a limiter function needs to be
calculated in each cell. With a limiter function applied, the limited reconstructed values can be written as

Qi j = Q̄i +φi(xi j− xi) ·∇Qi and Q ji = Q̄ j +φ j(xi j− x j) ·∇Q j.

Since Q has several components, the limiter function is computed for each component. On multi-dimensional
unstructured meshes, popular limiters include the min-max limiter of Barth & Jespersen [40] and Venkatakr-
ishnan’s limiter [41].

The reconstruction methods mentioned above are dimension-agnostic, meaning they can be applied
on one- and multi-dimensional unstructured meshes of arbitrary shapes. However, on one- and multi-
dimensional structured meshes, the total variation diminishing (TVD) type slope limiters such as the min-
mod, superbee and MC slope limiters [16] are preferred over their dimension-agnostic counterparts, where
they are usually more robust for obtaining high-resolution monotonic solutions. One choice of slope in one
dimension that gives second-order accuracy for smooth solutions while still satisfying the TVD property is
the minmod slope limiter:

φi∇Qi = minmod
(

Qi−Qi−1

∆x
,
Qi+1−Qi

∆x

)
(29)

where the minmod function of two arguments is defined by

minmod(a,b) =


a if |a|< |b| and ab > 0,
b if |b|< |a| and ab > 0,
0 if ab≤ 0.

(30)

If a and b have the same sign, then this selects the one that is smaller in modulus, else it returns zero.
Rather than defining the slope on the ith cell by always using the downwind difference (which would give
the LaxWendroff method), or by always using the upwind difference (which would give the BeamWarming
method), the minmod method compares the two slopes and chooses the one that is smaller in magnitude. If
the two slopes have different sign, then the value Qi must be a local maximum or minimum, and it is easy
to check in this case that we must set φi = 0 in order to satisfy the TVD condition. The minmod method
does a fairly good job of maintaining good accuracy in the smooth hump and also sharp discontinuities in
the square wave, with no oscillations.
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4 Benchmark Test Problems

Verification testing is part of our software quality control process and ensures that the developed code is
solving problems of interest to RELAP-7 [11], while meeting the necessary design requirements. This
section identifies a number of verification benchmark problems of interest to RELAP-7, and summarizes the
solutions of the second-order reconstructed discontinuous Galerkin (rDG(P0P1)) code to the problems. The
tests were organized by the methods and physics to enable a quick survey of each component in the code.
Each test has a subsection describing why the test is included and how to set it up (§Problem Setup), and
numerical results and remarks (§Results and Remarks).

The rDG(P0P1) code is written in Fortran 90/95, and compiled with the GNU Fortran (6.2.0) com-
piler with optimization level 3. All of the rDG(P0P1) results were obtained by running the code in serial
computing on a MacBook Pro (2013) with a 2.6 GHz Intel Core i7 processor.

The version of RELAP-7 code used for solving the test problems corresponds to RELAP-7’s Git version
control commit number e71678ebf30f9bfc401000a6a07d37be9336ad1e as of August 15, 2017.

Definition of the few notations that appear in the figures in the section is given as below:

Method Denotation

rDG(P0P0) first-order rDG method
rDG(P0P1) second-order rDG method with minmod slope limiter
RELAP-7 FEM second-order FEM method without any numerical stabilization scheme
RELAP-7 FEM-EVM(0) second-order FEM method with constant entropy viscosity stabilization
RELAP-7 FEM-EVM(1) second-order FEM method with variable entropy viscosity stabilization

The stiffened-gas equation of state (SGEOS) is used within its range of applicability for calculating the
thermodynamic properties of fluids under consideration. Although SGEOS is not as physically accurate
as the steam and water equation of state based on the latest IAPWS Guideline [42], the SGEOS for the
simulation problems in this document is sufficient, as the focus in the present study is the viability and
robustness of the numerical discretization methods under consideration.

The SGEOS parameters used in single-phase ideal gas flow problems are listed in Table 1, where the pa-
rameters are non-dimensionalized so that the results can be conveniently compared with available analytical
solution data in literature.

The SGEOS parameters used for a single-phase liquid/vapor convergent-divergent nozzle problem in
Section 4.4 were taken from Ref. [1], as shown in Table 2. Though not used for two-phase calculations
in Ref. [1] due to a manuscript error, those parameters were still used in Section 4.4, as the results can be
readily verified by comparing with those in Ref. [1] for single-phase calculations.

The SGEOS parameters used for a co-existing two-phase liquid and vapor flow simulation problem in
Section 4.5. were taken from RELAP-7 Theory Manual [2], and are shown in Table 3. A Tsat curve can be
established with these parameters, as shown in Fig. 1.
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Table 1. Stiffened-gas equation of state non-dimensionalized parameters for ideal gas.

Gas γ p∞ q q′ cv

Air 1.4 0 0 0 1/γ(γ−1)

Table 2. Stiffened gas equation of state parameters for water and its vapor, from [1].

Water γ p∞ (Pa) q (J ·kg−1) q′ (J ·kg−1 ·K−1) cv (J ·kg−1 ·K−1)

Liquid phase 2.04 8.5×108 −1151×103 0 2069
Vapor phase 1.34 0 1968×103 −23×103 1265

Table 3. Stiffened gas equation of state parameters for water and its vapor, from [2].

Water γ p∞ (Pa) q (J ·kg−1) q′ (J ·kg−1 ·K−1) cv (J ·kg−1 ·K−1)

Liquid phase 2.35 109 −1167×103 0 1816
Vapor phase 1.43 0 2020×103 −23×103 1040
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Figure 1. A Tsat(p) curve calculated with Eq. (19) given the input pressure ranging from 103 to 2×107 Pa.
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4.1 Lax Shock Tube

4.1.1 Problem Setup

The Lax shock tube [43] is a Riemann problem used as a standard test problem in computational hydrody-
namics. This problem is very suitable to be used for investigating the robustness of a spatial discretization
scheme, as the shock wave involved in this problem is much stronger than that in the Sod shock tube prob-
lem, and thus is more challenging to solve. The set of SGEOS parameters in Table 1 was used for ideal
gas in this test. The computational domain is bounded between x = 0 and 1, and contains 400 equi-distant
elements. The free outflow boundary condition is imposed at both the left and right ends. The initial condi-
tions are described as: ρ = 0.445 u = 0.698, p = 3.528 for 0 ≤ x < 0.5, and ρ = 0.5, u = 0, p = 0.571 for
0.5 < x≤ 1. The simulation was started at t = 0, and terminated at t = 0.15. In the rDG simulations, a fixed
timestep size of dt = 1×10−4 was used, and 1500 timesteps were used to complete each simulation.

4.1.2 Results and Remarks

The computed solution profiles for density, specific internal energy, velocity, Mach number, pressure and
temperature are plotted in Figs. 2 - 7, respectively, and compared with analytical solutions to this problem.
Remarks are given below.

• RELAP-7’s FEM-EVM(1) delivered incorrect solution in the rarefaction region as well as near the
left and right ends. Source of error might be from the treatment of free outflow boundary condition
under the context of FEM-EVM(1) within RELAP-7.

• rDG(P0P1) delivered the best overall solution among the methods tested in this problem. rDG(P0P0),
as first-order accurate and monotonic, delivered a more diffusive solution than rDG(P0P1).

• RELAP-7’s FEM-EVM(0) delivered a much more diffusive solution than rDG(P0P0). In that regard,
RELAP-7’s FEM-EVM(0) is considered much less spatially accurate than the first-order rDG(P0P0).

• In comparison with rDG(P0P1), RELAP-7’s FEM-EVM(1) exhibited similar accuracy in resolving the
contact discontinuity and shock front. However, RELAP-7’s FEM-EVM(1) rendered an oscillatory
solution in the vicinity of shock front.

Finally, the CPU time measured in the simulations is listed in the following table.

Method CPU time (seconds)

RELAP-7 FEM-EVM(0) 185.347
RELAP-7 FEM-EVM(1) 185.347
rDG(P0P0) 0.253
rDG(P0P1) 0.351

The CPU time indicates that rDG methods with explicit time stepping are an advantage for solving transient
gas dynamic problems with wave propagation containing strong gradients.
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Figure 2. Computed density profiles at t = 0.15 for the Lax shock tube.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

In
te

rn
a
l 
e
n
e
rg

y

x

RELAP-7 FEM-EVM(0)
RELAP-7 FEM-EVM(1)
rDG(P0P0)
rDG(P0P1)
Analytical

Figure 3. Computed specific internal energy profiles at t = 0.15 for the Lax shock tube.
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Figure 4. Computed velocity profiles at t = 0.15 for the Lax shock tube.
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Figure 5. Computed Mach number profiles at t = 0.15 for the Lax shock tube.
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Figure 6. Computed pressure profiles at t = 0.15 for the Lax shock tube.
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Figure 7. Computed temperature profiles at t = 0.15 for the Lax shock tube.
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4.2 Vapor Shock Tube

This test consists of a single-phase vapor shock tube in a pipe bounded between x = 0 and 2 m [11, 44, 45].
The 1-D pipe was discretized with 400 uniform elements, and the wall boundary conditions were applied
to the left and right ends. A diaphragm located at x = 1 m separated a high pressure chamber (P = 2
MPa and T = 486.5 K) and a low pressure chamber (P = 1 MPa and T = 453.1 K). The vapor properties
were computed from the SGEOS with parameters in Table 3. The solution results for this problem recently
reported in Ref. [11] used the IAPWS-95 Spline Based Table Lookup approach [42] to accurately compute
the vapor properties. At t = 0 s, the diaphragm is removed, and the vapor initially at rest starts to develop
contact, rarefaction, and shock waves. In the present test, the simulation was started at t = 0 s, and terminated
at t = 0.001 s. In the rDG simulations, a fixed timestep size of dt = 1×10−6 s was used, and 1000 timesteps
were used to complete each simulation.

4.2.1 Results and Remarks

The computed rDG solution profiles for density, specific internal energy, velocity, Mach number, pressure
and temperature are plotted in Figs. 8 – 13, respectively, and compared with the RELAP-7’s FEM-EVM
solutions to this problem. Remarks are given below.

• rDG(P0P1) delivered the best overall solution among the methods tested in this problem. No oscilla-
tion is found at all in the rDG(P0P1) solution. rDG(P0P0) delivered a solution that is more diffusive
than rDG(P0P1).

• RELAP-7’s FEM-EVM(1) solution rendered non-physical spurious oscillations in the vicinities of
rarefaction, contact discontinuities and shock wave. Alternative parameters in the EVM(1) method
may reduce, but probably not completely eliminate those oscillations.

• RELAP-7’s FEM-EVM(0) delivered a much more diffusive solution than rDG(P0P0). In that regard,
RELAP-7’s FEM-EVM(0) is considered much less spatially accurate than the first-order rDG(P0P0).

Finally, the CPU time measured in the simulations is listed in the following table.

Method CPU time (seconds)

RELAP-7 FEM-EVM(0) 12.551
RELAP-7 FEM-EVM(1) 17.272
rDG(P0P0) 0.164
rDG(P0P1) 0.229

The CPU time indicates that rDG methods with explicit time stepping are in significant advantage in terms
of computing time in this test problem.
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Figure 8. Computed density profiles at t = 0.001 for the vapor shock tube.
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Figure 9. Computed specific internal energy profiles at t = 0.001 for the vapor shock tube.
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Figure 10. Computed velocity profiles at t = 0.001 for the vapor shock tube.
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Figure 11. Computed Mach number profiles at t = 0.001 for the vapor shock tube.
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Figure 12. Computed pressure profiles at t = 0.001 for the vapor shock tube.
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Figure 13. Computed temperature profiles at t = 0.001 for the vapor shock tube.
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4.3 Liquid Water Shock Tube

Again we draw a test problem from Ref. [11] to which RELAP-7 has recently been applied. This problem
presents a numerical solution of a liquid water shock tube in a 1-D pipe bounded between x = 0 and 10
m. The pipe was discretized with 400 uniform elements. The initial conditions consisted of two chambers
separated by a diaphragm. The left chamber was filled with high pressure water (P = 10 MPa), and the
right chamber was filled with low pressure water (P = 0.1 MPa). Wall boundary conditions were set to the
left and right ends of the pipe. The water is initially at rest and at the same temperature T = 300K in both
chambers. Unlike in Ref. [11], where the IAPWS-95 Spline Based Table Lookup approach [42] was used to
compute the vapor properties, the liquid properties in the present test are computed from the SGEOS with
parameters in Table 3. At t = 0 s, the diaphragm is removed and the flow develops. In the present test, the
simulation was started at t = 0 s, and terminated at t = 0.001 s. In the rDG simulations, a fixed timestep size
of dt = 1×10−5 s was used, and 100 timesteps were used to complete each simulation.

4.3.1 Results and Remarks

The computed solution profiles for density, specific internal energy, velocity, Mach number, pressure and
temperature are plotted in Figs. 14 – 19, respectively, and compared with analytical solutions to this problem.
Remarks are given below.

• rDG(P0P1) delivered the best solution among the methods tested in this problem. No oscillation is
found at all in the rDG(P0P1) solution. rDG(P0P0) delivered a solution that is more diffusive than
rDG(P0P1) in the vicinities of the shock waves. In particular, the contact discontinuity at x = 5 m was
captured by rDG(P0P1) and rDG(P0P0) within only two elements.

• RELAP-7’s FEM-EVM(1) solution rendered non-physical spurious oscillations in the vicinities of
contact discontinuities, shock waves, and even in regions which should not be disturbed by shock
waves yet. Again, alternative parameters in the EVM(1) method may reduce, but probably not com-
pletely eliminate those oscillations.

• RELAP-7’s FEM-EVM(0) delivered an overly diffusive solution in this problem, especially near the
contact discontinuity at x = 5 m.

Finally, the CPU time measured in the simulations is listed in the following table.

Method CPU time (seconds)

RELAP-7 FEM-EVM(0) 11.628
RELAP-7 FEM-EVM(1) 11.941
rDG(P0P0) 0.018
rDG(P0P1) 0.024

The CPU time indicates that rDG methods with explicit time stepping give a markedly reduced computing
time for solving transient gas dynamic problems with wave propagation containing strong gradients.
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Figure 14. Computed density profiles at t = 0.001 for the liquid water shock tube.
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Figure 15. Computed specific internal energy profiles at t = 0.001 for the liquid water shock tube.
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Figure 16. Computed velocity profiles at t = 0.001 for the liquid water shock tube.
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Figure 17. Computed Mach number profiles at t = 0.001 for the liquid water shock tube.
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Figure 18. Computed pressure profiles at t = 0.001 for the liquid water shock tube.
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Figure 19. Computed temperature profiles at t = 0.001 for the liquid water shock tube.
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4.4 Convergent–Divergent Nozzle

4.4.1 Problem Setup

From Ref. [1] we take a problem that describes a steady-state flow of vapor/liquid water in a convergent–
divergent nozzle. This problem allows for some special-case, two-phase flow solutions that only the seven-
equation model can be tested on, but which offer very good testing of several two-phase modeling fundamen-
tals. The computational domain is bounded between x = 0 and 1 m, and the cross-section area of the nozzle
can be mathematically described as A(x) = 1+ 1

2 cos(2πx) m. The stagnation inlet boundary condition was
imposed at the left end with stagnation pressure p0 = 1 MPa and stagnation temperature T0 = 453 K, and
the static pressure outlet boundary condition was imposed at the right end with static pressure pout = 0.5
MPa. For the purpose of preliminary investigation, two-phase coupling through relaxation was turned off in
this test. In this case, two simultaneous single-phase problems result with the phases sharing the same flow
domain. The analytical solutions for each phase are known. The SGEOS parameters in Table 2 were used.
A mesh consisting of 400 elements uniformly distributed in the domain was used. The initial conditions:
p = 0.5 MPa, T = 453 K, and u = 0 in the whole domain, were used in the tests of vapor and liquid water,
respectively. Each simulation was started at t = 0, and run with sufficient timesteps to reach steady state.

4.4.2 Results and Remarks

The computed solution profiles for vapor density, specific internal energy, velocity, Mach number, pressure
and temperature are plotted in Figs. 20 – 25, respectively. Remarks are given below.

• The location of shock predicted by RELAP’s FEM-EVM(1) does not appear correct. With reference
to Ref. [1], it can be confirmed that the other three methods, rDG(P0P0), rDG(P0P1) and RELAP-7’s
FEM-EVM(0), delivered correct prediction of the shock location.

• Oscillations in the RELAP-7 FEM-EVM(1) solutions were observed near the right boundary.

• rDG(P0P1) delivered the most accurate and oscillation-free shock resolution, where the shock was
captured within only two elements. rDG(P0P0) also delivered excellent shock resolution, where the
shock was captured within two elements.

• RELAP-7’s FEM-EVM(0) has been significantly more diffusive than the first-order accurate
rDG(P0P0).

In addition, the histories of L2 norm of rDG(P0P0) solution variable residual in terms of timesteps and
CPU time are plotted in Fig. 26 and 27, respectively. Those for rDG(P0P1) are plotted in Fig. 28 and 29,
respectively. The L2 norm of rDG solution variable residual is given as

‖Un
i −Un−1

i ‖2=

√
Nelem

∑
i=1

(Un
i −Un−1

i )2

where U is a solution variable (e.g. ρ, ρu, or ρE), Nelem the number of elements in the domain, and n the
current timestep. Remarks are given below.
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• The rDG(P0P0) vapor density residual dropped toward machine zero with sufficient timesteps; see
Fig. 26. Indeed, a first-order spatial scheme is expected to achieve such convergence in steady-state
problems. Moreover, it took only 5 seconds in CPU time for rDG(P0P0) density residual to drop 14
orders of magnitude in explicit two-stage TVDRK stepping; see Fig. 27.

• rDG(P0P1) with a TVD slope limiter (e.g. minmod) usually cannot make solutions converge to ma-
chine zero. Nevertheless, steady-state solutions can still be reached at a higher level of residual norm.
Moreover, rDG(P0P1) ran fast, as only 3 seconds in CPU time were needed in this test; see Fig. 29.

The computed solution profiles for liquid density, specific internal energy, velocity, Mach number, pres-
sure and temperature are plotted in Figs. 30 – 35, respectively. Remarks are given below.

• In this smooth problem, RELAP-7’s FEM-EVM(0) and rDG(P0P0) appeared almost unusable, as the
results by these two schemes were severely diffused. Only significant amount of mesh refinement
could improve their resolution in this problem, which would become drastically more expensive in
terms of computing time, and perhaps practically unaffordable in system-scale simulations.

• The results of rDG(P0P1) and RELAP-7’s FEM-EVM(1) agreed well with each other.

The histories of L2 norm of rDG(P0P0) liquid solution variable residual in terms of timesteps and CPU time
are plotted in Fig. 36 and 37, respectively. Those for rDG(P0P1) are plotted in Fig. 38 and 39, respectively.
Remarks are given below.

• The rDG(P0P0) liquid density residual dropped toward machine zero with sufficient timesteps; see
Fig. 36. It took 200 seconds in CPU time for rDG(P0P0) liquid density residual to drop 15 orders
of magnitude in explicit two-stage TVDRK stepping; see Fig. 27.

• Using fully compressible formulations, rDG(P0P1) with explicit time stepping is known to be disad-
vantaged for low-Mach water flow problems. The effective dissipation is wrong and gives inaccurate
results. Another issue is convergence stall, in which much more timesteps are actually required for
rDG(P0P1) to reach converged solution even after the residual curves appear to flat out; see Fig. 38.

• An implicit time integration scheme should help rDG(P0P1) reach steady state significantly faster
than its explicit counterpart in terms of CPU time; see Fig. 39. Low-Mach Riemann solvers are also
available now to ameliorate this effect.
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Figure 20. Steady-state density profiles for vapor in a convergent–divergent nozzle.
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Figure 21. Steady-state specific internal energy profiles for vapor in a convergent–divergent nozzle.
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Figure 22. Steady-state velocity profiles for vapor in a convergent–divergent nozzle.
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Figure 23. Steady-state Mach number profiles for vapor in a convergent–divergent nozzle.
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Figure 24. Steady-state pressure profiles for vapor in a convergent–divergent nozzle.
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Figure 25. Steady-state temperature profiles for vapor in a convergent–divergent nozzle.
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Figure 26. rDG(P0P0) solution residual versus timesteps for vapor in a convergent–divergent nozzle.
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Figure 27. rDG(P0P0) solution residual versus CPU time for vapor in a convergent–divergent nozzle.
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Figure 28. rDG(P0P1) solution residual versus timesteps for vapor in a convergent–divergent nozzle.
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Figure 29. rDG(P0P1) solution residual versus CPU time for vapor in a convergent–divergent nozzle.
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Figure 30. Steady-state density profiles for liquid water in a convergent–divergent nozzle.
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Figure 31. Steady-state specific internal energy profiles for liquid water in a convergent–divergent nozzle.
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Figure 32. Steady-state velocity profiles for liquid water in a convergent–divergent nozzle.
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Figure 33. Steady-state Mach number profiles for liquid water in a convergent–divergent nozzle.
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Figure 34. Steady-state pressure profiles for liquid water in a convergent–divergent nozzle.
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Figure 35. Steady-state temperature profiles for liquid water in a convergent–divergent nozzle.
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Figure 36. rDG(P0P0) solution residual versus timesteps for water in a convergent–divergent nozzle.
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Figure 37. rDG(P0P0) solution residual versus CPU time for water in a convergent–divergent nozzle.

42



10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 0  50000  100000  150000  200000  250000  300000  350000  400000  450000  500000

R
e
s
id

u
a
l

Timestep

rho
rhou
rhoE

Figure 38. rDG(P0P1) solution residual versus timesteps for water in a convergent–divergent nozzle.
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Figure 39. rDG(P0P1) solution residual versus CPU time for water in a convergent–divergent nozzle.
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4.5 Thermodynamic Equilibrium of Co-Existing Vapor and Liquid Water

4.5.1 Problem Setup

This problem describes thermodynamic equilibrium of vapor and liquid co-existing in a pipe with constant
cross-section area of A = 1. The initial conditions are: (αg, pg, ug, Tg) = (αl , pl , ul , Tl) = (0.5, 0.5 MPa, 0
m/s, 453 K) in the whole domain bounded between x = 0 and 1. The SGEOS parameters in Table 3 were
used. The solid wall boundary conditions were imposed at the left and right end. In Eqs. (1) - (7), the terms
that involve the phasic velocities (i.e. ug and ul), interphase velocity (i.e. uint and ūint), and variable spatial
gradients (i.e. ∂αg/∂x, ∂αl/∂x, ∂pg/∂x, ∂pl/∂x, and ∂A/∂x) should always remain zero in this problem, and
thus can be eliminated, resulting in the following zero-th order system of partial differential equations (a
system of ordinary differential equations):

∂αgA
∂t

= Aµ(pg− pl)+
Γint,gAintA

ρint
(31)

∂αgρgA
∂t

= Γint,gAintA (32)

∂αgρgugA
∂t

= 0 (33)

∂αgρgEgA
∂t

= − p̄intAµ(pg− pl)−Γint,gAint(
pint

ρint
−Hg,int)A+Ainthconv,g(Tint −Tg)A (34)

∂αlρlA
∂t

= −Γint,gAintA (35)

∂αlρlulA
∂t

= 0 (36)

∂αlρlElA
∂t

= − p̄intAµ(pl− pg)+Γint,gAint(
pint

ρint
−Hl,int)A+Ainthconv,l(Tint −Tl)A (37)

In theory it requires only 1 elment to solve Eqs. (31) - (37), as the solution should remain constant regardless
of the location. However, we used 400 elements to solve Eqs. (1) - (7), in order to check if the computed
solution would vary between the elements.

4.5.2 Results and Remarks

In this test problem, the variable residuals were driven below 10−14 in the rDG(P0P0) and rDG(P0P1) simu-
lations, while in RELAP-7 EVM(0), EVM(1) and FEM(1) simulations, the lowest possible level of variable
residuals was around 10−9. The computed solution profiles for phasic volume fraction, density, specific
internal energy, velocity, pressure and temperature are plotted in Figs. 40 – 51, respectively. Remarks are
given below.

• Overall, the solutions computed by the rDG and RELAP-7 agreed well. Maximum relative error of
the solutions between the two classes of methods was around 0.01% and 0.001%. In that regard, we
can conclude that the interface mass and energy transfer terms implemented in the rDG code are able
to produce the same solution as those of RELAP-7.

• The velocities computed by rDG(P0P0) and rDG(P0P1) were uniformly zero, as shown in Figs. 46 and
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47. The reconstructed gradients of the variables in rDG(P0P1) were also zero. Thus rDG(P0P1) was
numerically identical to rDG(P0P0) in this test, and they resulted in numerically the same solutions.

• The velocities computed by RELAP-7’s FEM-EVM(0), FEM-EVM(1) and FEM were not uniformly
zero, as shown in Figs. 46 and 47. Their maximum magnitudes (10−11) were however small enough to
not be a concern. It is usually not possible to obtain absolute zero velocities using an implicit solver.

• As shown in Fig. 45, the liquid-phase specific internal energy profile computed by RELAP-7’s FEM-
EVM(0) does not visually match those by RELAP-7’s FEM-EVM(1) and FEM. Disagreement be-
tween the RELAP-7’s EVM(0), EVM(1), and FEM(1) solution profiles is also visually observed in
the vapor-phase density in Fig. 42, vapor- and liquid-phase pressures in Figs. 48 and 43, respectively.
The contributions of the dissipation terms in RELAP-7 involve combinations of terms proportional to
gradients of a number of variables. Whenever gradients exist for those variables, the dissipation terms
are possibly non-zero. These effects can be amplified for large dissipation coefficients, such as those
sometimes encountered for the low-order dissipation scheme, possibly producing a slightly different
solution than for the no-dissipation case.

• As shown in Fig. 48, the vapor pressures obtained by RELAP-7’s FEM-EVM(0), FEM-EVM(1) and
FEM do not closely match each other. Such disagreement is also observed in the liquid pressures
obtained by RELAP-7’s FEM-EVM(0), FEM-EVM(1) and FEM, as shown in Fig. 49.

In conclusion, this test problem, though it looks trivial, is important to verify the implementation and con-
vergence with regard to the interface mass and energy transfer terms. An implicit solver is necessary for
the best solution speed in zero-speed problems like this. However on the other side, the implicit solver in
RELAP-7 may need to be reviewed to overcome a few known defficiencies for solving such problems.
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Figure 40. Volume fraction profiles for vapor at equilibrium.
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Figure 41. Volume fraction profiles for liquid at equilibrium.
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Figure 42. Density profiles for vapor at equilibrium.

 908.645

 908.646

 908.647

 908.648

 908.649

 908.65

 908.651

 908.652

 908.653

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

D
e
n
s
it
y
 (

k
g
/m

3
)

X (m)

RELAP-7 FEM-EVM(1)
RELAP-7 FEM-EVM(0)
RELAP-7 FEM
rDG(P0P0)
rDG(P0P1)

Figure 43. Density profiles for liquid at equilibrium.
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Figure 44. Specific internal energy profiles for vapor at equilibrium.
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Figure 45. Specific internal energy profiles for liquid at equilibrium.
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Figure 46. Velocity profiles for vapor at equilibrium.
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Figure 47. Velocity profiles for liquid at equilibrium.
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Figure 48. Pressure profiles for vapor at equilibrium.
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Figure 49. Pressure profiles for liquid at equilibrium.
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Figure 50. Temperature profiles for vapor at equilibrium.
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Figure 51. Temperature profiles for liquid at equilibrium.
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5 Conclusions

5.1 About the Testing Results

A comparative test case study between a second-order reconstructed discontinuous Galerkin (rDG(P0P1))
method and RELAP-7’s finite element method (FEM) with an entropy viscosity method (EVM) based nu-
merical stabilization scheme over a series of benchmark test problems has been presented in this document.
The computational results clearly indicate that the performance of the rDG(P0P1) method is superior to that
of RELAP-7’s FEM method with the use of the EVM stabilization method in all the test problems presented.
We emphasize that the same default parameters in the EVM method were used in all the RELAP-7’s FEM-
EVM simulations in this document. Although additional efforts at parameter tuning in each test problem
might improve the RELAP-7’s FEM-EVM simulation results, this approach of parameter tuning could be
burdensome or challenging for any RELAP-7 user without prior experience or guidance. In comparison, the
TVD-type slope limiter in the rDG(P0P1) method is parameter-free, and mathematically guarantees numer-
ical stability at the vicinity of large solution variable gradients. Nevertheless, the current state of the art of
rDG methods for the seven-equation, two-phase compressible flow models over a broad spectrum of prob-
lems is not expected to be ideal. For example, the recent approximate Riemann solver for the seven-equation
model of Furfaro and Saurel [46] should be implemented along with a suitable low-Mach Riemann solver.
Above all, as far as the test problems in this document are considered, the second-order rDG(P0P1) method
is recommended as a better solution method option for RELAP-7.

5.2 Outlook of the Future of RELAP-7

The achievement of a spatially and temporally accurate, numerically stable and ultimately robust numerical
solution method within the MOOSE framework environment for the RELAP-7 thermal-hydraulic modeling
component has been one of the major technical challenges over the past six years of the RELAP-7 code
development. A numerically stable solution method serves as the cornerstone of the overall design of a
thermal-hydraulic modeling code. The resolution of other challenges such as the development, verification
and validation of new physical models will not be possible in the absence of a numerically stable solution
method. In the case of RELAP-7, a robust numerical stabilization scheme will aid in the resolution of some
other challenges. If the rDG(P0P1) method is accepted in the follow-up development of RELAP-7, a series
of other related technical issues could be resolved. For example, the fully-implicit solver currently used
in RELAP-7 is not an optimal option for solving flow problems that involve wave propagation containing
drastic physical variable gradients. In those particular problems, the allowable physical time step size is
usually very small, where the use of a fully-implicit time integration solver can become significantly slower
than a fully-explicit or a semi-implicit method. As shown in this document, an explicit method properly
implemented can be hundreds or thousands of times faster in terms of CPU time. Thus it is recommended
that the follow-up development of RELAP-7 include the development of such numerical methods as well as
the implementation of the same schemes in an optimal way in the MOOSE framework.
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Michael P Short, Danielle M Perez, Michael R Tonks, Javier Ortensi, et al. Physics-based multiscale
coupling for full core nuclear reactor simulation. Annals of Nuclear Energy, 84:45–54, 2015.

[5] R. L. Moore, S. M. Sloan, R. R. Schultz, and G. E. Wilson. RELAP5/MOD3 Code Manual, Volume 1:
Code Structure, System Models and Solution Methods. Technical Report NUREG/CR-5335, INEL-
95/0174, Idaho National Laboratory, Idaho Falls, ID, United States, June 1995.

[6] S Bajorek et al. TRACE V5.0 Theory Manual, Field Equations, Solution Methods and Physical Mod-
els. Technical report, United States Nuclear Regulatory Commission, 2008.

[7] R. A. Berry, M. O. Delchini, and J. Ragusa. RELAP-7 Numerical Stabilization: Entropy Viscosity
Method. Technical Report INL/EXT-14/32352, Idaho National Laboratory, Idaho Falls, ID, United
States, June 2014.

[8] Marc Delchini. Extension of the Entropy Viscosity Method to the Multi-D Euler Equations and the
Seven-Equation Two-Phase Model. PhD thesis, Texas A&M University, 2014.

[9] Marc O Delchini, Jean C Ragusa, and Ray A Berry. Entropy-based viscous regularization for the
multi-dimensional Euler equations in low-Mach and transonic flows. Computers & Fluids, 118:225–
244, 2015.

[10] Marc O Delchini, Jean C Ragusa, and Ray A Berry. Viscous regularization for the non-equilibrium
seven-equation two-phase flow model. Journal of Scientific Computing, 69(2):764–804, 2016.

[11] Marc O Delchini, Jean C Ragusa, and Ray A Berry. Simulations of single-and two-phase shock tubes
and gravity-driven wave problems with the RELAP-7 nuclear reactor system analysis code. Nuclear
Engineering and Design, 319:106–116, 2017.

[12] Hong Luo, Luqing Luo, Robert Nourgaliev, Vincent A Mousseau, and Nam Dinh. A reconstructed dis-
continuous Galerkin method for the compressible Navier–Stokes equations on arbitrary grids. Journal
of Computational Physics, 229(19):6961–6978, 2010.

[13] Hong Luo, Yidong Xia, Seth Spiegel, Robert Nourgaliev, and Zonglin Jiang. A reconstructed dis-
continuous Galerkin method based on a Hierarchical WENO reconstruction for compressible flows on
tetrahedral grids. Journal of Computational Physics, 236:477–492, 2013.

53



[14] Yidong Xia, Jialin Lou, Hong Luo, Jack Edwards, and Frank Mueller. OpenACC acceleration of an
unstructured CFD solver based on a reconstructed discontinuous Galerkin method for compressible
flows. International Journal for Numerical Methods in Fluids, 78(3):123–139, 2015.

[15] Yidong Xia, Xiaodong Liu, and Hong Luo. A finite volume method based on a WENO reconstruction
for compressible flows on hybrid grids. In 52nd AIAA Aerospace Sciences Meeting, number 2014–
0939, National Harbor, Maryland, United States, January 2014.

[16] Randall J LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge University Press,
2002.
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